Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

Пермский национальный исследовательский политехнический университет

УТВЕРЖДАЮ

Проректор по образовательной деятельности

А.Б. Петроченков « 09 » октября 20 23 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

(исциплина: Накопители энергии		
	(наименование)	
Форма обучения:	очная	
	(очная/очно-заочная/заочная)	
Уровень высшего образования:	бакалавриат	
	(бакалавриат/специалитет/магистратура)	
Общая трудоёмкость:	180 (5)	
	(часы (ЗЕ))	
Направление подготовки:	13.03.02 Электроэнергетика и электротехника	
	(код и наименование направления)	
Направленность: Электроэнер	огетика и электротехника (общий профиль, СУОС)	
	(наименование образовательной программы)	

1. Общие положения

1.1. Цели и задачи дисциплины

Цель учебной дисциплины: освоение дисциплинарных компетенций в области расчета, выбора, исследования и применения накопителей энергии на объектах электроэнергетики, в т.ч. в системах передачи и распределения электрической энергии.

Задачи учебной дисциплины:

- изучение устройства, принципов работы, особенностей производства и применения основных накопителей энергии, а также их выбора для решения конкретных задач электроэнергетики;
- формирование умений расчёта и выбора накопителей в системах передачи и распределения электрической энергии;
- формирование навыков моделирования и исследования режимов работы основных накопителей энергии с применением базовых программно-технических комплексов.

1.2. Изучаемые объекты дисциплины

- механические накопители энергии;
- электрические накопители энергии;
- химические и электрохимические накопители энергии;
- тепловые накопители энергии.

1.3. Входные требования

Изучение дисциплин "Общая энергетика" и "Электротехническое и конструкционное материаловедение".

2. Планируемые результаты обучения по дисциплине

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ПК-2.1			Знает основы электроники, схемы, состав оборудовании, режим работы электротехнических и электроэнергетических установок различного назначения	Экзамен

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
ПК-2.1	ИД-2ПК-2.1	Умеет: производить расчет и выбор накопителей энергии в системах передачи и распределения электрической энергии, в т.ч. содержащих альтернативные источники энергии.	схемы, электротехнические и электроэнергетические установки	Экзамен
ПК-2.1	ИД-3ПК-2.1	Владеет навыками: моделирования и исследования режимов работы основных накопителей энергии с применением базовых программно-технических комплексов.	Владеет навыками расчета схем и режимов работы электронных и электротехнических установок	Защита лабораторной работы
ПК-2.7	ИД-1ПК-2.7	Знает правила технологического функционирования накопителей энергии и электрических сетей; требования системы технического регулирования к накопителям энергии и электрическим сетям; методики и правила проведения расчетов для проектов накопителей энергии и электрических сетей	Знает правила технологического функционирования накопителей энергии и электрических сетей; требования системы технического регулирования к накопителям энергии и электрическим сетям; методики и правила проведения расчетов для проектов накопителей энергии и электрических сетей	Экзамен
ПК-2.7	ИД-2ПК-2.7	Умеет выбирать необходимые требования к функционированию накопителей энергии и электрических сетей; выбирать методики расчета для проектов накопителей энергии и электрических сетей; определять перечень оборудования для накопителей энергии и электрических сетей	Умеет выбирать необходимые требования к функционированию накопителей энергии и электрических сетей; выбирать методики расчета для проектов накопителей энергии и электрических сетей; определять перечень оборудования для накопителей энергии и электрических сетей; определять перечень оборудования для	Экзамен
ПК-2.7	ид-3ПК-2.7	Владеет навыками формирования перечня оптимальных технических решений проектной документации накопителей энергии и электрических сетей;	Владеет навыками формирования перечня оптимальных технических решений проектной документации накопителей энергии и электрических сетей;	Защита лабораторной работы

Компетенция	Индекс индикатора	Планируемые результаты обучения по дисциплине (знать, уметь, владеть)	Индикатор достижения компетенции, с которым соотнесены планируемые результаты обучения	Средства оценки
	выполнения расчетом проекта накопителей энергии и электричес сетей		выполнения расчетов для проекта накопителей энергии и электрических сетей	

3. Объем и виды учебной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра
		5
1. Проведение учебных занятий (включая проведе-	54	54
ние текущего контроля успеваемости) в форме:		
1.1. Контактная аудиторная работа, из них:		
- лекции (Л)	18	18
- лабораторные работы (ЛР)	16	16
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)	16	16
- контроль самостоятельной работы (КСР)	4	4
- контрольная работа		
1.2. Самостоятельная работа студентов (СРС)	90	90
2. Промежуточная аттестация		
Экзамен	36	36
Дифференцированный зачет		
Зачет		
Курсовой проект (КП)		
Курсовая работа (КР)		
Общая трудоемкость дисциплины	180	180

4. Содержание дисциплины

Наименование разделов дисциплины с кратким содержанием			Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	П3	CPC
5-й семестр				

Наименование разделов дисциплины с кратким содержанием	Объем аудиторных занятий по видам в часах		Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	П3	CPC
Механические накопители энергии	4	4	4	20
Введение. Классификация накопителей энергии. Тема 1. Кинетические накопители (маховики) (КНЭ). Принцип работы КНЭ. Положительные и отрицательные стороны использования. Современные тенденции применения. Тема 2. Гидроаккумуляторы. ГАЭС. Виды ГАЭС. ГАЭС как гидроаккумулятор. Положительные и отрицательные стороны использования ГАЭС. Принцип работы. Тема 3. Накопители электрической энергии на основе сжатого воздуха (НЭСВ). Классификация НЭСВ.				
Принцип работы. Положительные и отрицательные стороны использования. Оптимизация структуры и				
стоимости НЭСВ.		_	_	
Электрические накопители энергии	4	6	6	30
Тема 4. Суперконденсаторы. Суперконденсатор. Двухслойный суперконденсатор (ДСК). Схема единичной ячейки ДСК. Характеристики суперконденсаторов. Положительные и отрицательные стороны использования. Современные тенденции применения. Тема 5. Сверхпроводящие накопители электроэнергии. Принцип работы. Положительные и отрицательные стороны использования. Современные тенденции применения.				
Химические и электрохимические накопители энергии	6	4	4	20
Тема 6. Топливные элементы на водороде. Принцип работы топливного элемента с твердополимерным электролитом. Водородный цикл. Принципиальная схема реализации водородного цикла с топливными элементами. Положительные и отрицательные стороны использования. Современные тенденции в производстве и применении. Тема 7. Свинцово-кислотные аккумуляторы (СКА). Классификация СКА. Принцип работы. Положительные и отрицательные стороны использования. Современные тенденции в производстве и применении СКА. Тема 8. Никель-кадмиевые и никельметаллогидридные аккумуляторы. Принцип работы. Основная реакция в никель-кадмиевых аккумуляторах. Положительные и отрицательные стороны использования. Современные тенденции в производстве и применении. Тема 9. Литий-ионные аккумуляторы (ЛИАБ). Принцип действия литий-ионного аккумулятора. Основные свойства литий-ионного аккумулятора				

Наименование разделов дисциплины с кратким содержанием		ем аудито i по видам	Объем внеаудиторных занятий по видам в часах	
	Л	ЛР	ПЗ	CPC
Примеры схемотехнических решений активной и пассивной систем балансировки ЛИАБ. Положительные и отрицательные стороны использования. Тема 10. Натрий-серные аккумуляторы (NaS). Принцип действия NaS. Положительные и отрицательные стороны использования. Современные тенденции в производстве и применении. Тема 11. Проточные редокс-накопители. Принцип работы накопителя. Устройство и принцип работы редокс- накопителя с проточным электролитом. Положительные и отрицательные стороны использования. Современные тенденции в производстве и применении.				
Тепловые накопители энергии	4	2	2	20
Тема 12. Тепловые накопители. Тепловые аккумуляторы. Криогенные системы хранения. Принцип работы. Положительные и отрицательные стороны использования. Перспективы развития и применения накопителей энергии. Заключение.				
ИТОГО по 5-му семестру	18	16	16	90
ИТОГО по дисциплине	18	16	16	90

Тематика примерных практических занятий

№ п.п.	Наименование темы практического (семинарского) занятия
1	Практические занятия по разделу "Механические накопители энергии".
2	Практические занятия по разделу "Электрические накопители энергии".
3	Практические занятия по разделу "Химические и электрохимические накопители энергии".
4	Практические занятия по разделу "Тепловые накопители энергии".

Тематика примерных лабораторных работ

№ п.п.	Наименование темы лабораторной работы
1	Моделирование и исследование режимов работы механических накопителей энергии.
2	Моделирование и исследование режимов работы электрических накопителей энергии.
3	Моделирование и исследование режимов работы химических накопителей энергии.
4	Моделирование и исследование режимов работы тепловых накопителей энергии.

5. Организационно-педагогические условия

5.1. Образовательные технологии, используемые для формирования компетенций

Проведение лекционных занятий по дисциплине основывается на активном методе обучения, при котором учащиеся не пассивные слушатели, а активные участники занятия, отвечающие на вопросы преподавателя. Вопросы преподавателя нацелены на активизацию процессов усвоения материала, а также на развитие логического мышления. Преподаватель заранее намечает список вопросов, стимулирующих ассоциативное мышление и установление связей с ранее освоенным материалом.

Практические занятия проводятся на основе реализации метода обучения действием: определяются проблемные области, формируются группы. При проведении практических занятий преследуются следующие цели: применение знаний отдельных дисциплин и креативных методов для решения проблем и приятия решений; отработка у обучающихся навыков командной работы, межличностных коммуникаций и развитие лидерских качеств; закрепление основ теоретических знаний.

Проведение лабораторных занятий основывается на интерактивном методе обучения, при котором обучающиеся взаимодействуют не только с преподавателем, но и друг с другом. При этом доминирует активность учащихся в процессе обучения. Место преподавателя в интерактивных занятиях сводится к направлению деятельности обучающихся на достижение целей занятия.

При проведении учебных занятий используются интерактивные лекции, групповые дискуссии, анализ ситуаций и имитационных моделей.

5.2. Методические указания для обучающихся по изучению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям, лабораторным работам и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

6. Перечень учебно-методического и информационного обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Печатная учебно-методическая литература

№ п/п	Библиографическое описание (автор, заглавие, вид издания, место, издательство, год издания, количество страниц)	Количество экземпляров в библиотеке			
	1. Основная литература				
	Алиев И.И.Справочник по электротехнике и электрооборудованию : учебное пособие для вузов. 4-е изд., доп. Ростов-на-Дону : Феникс, 2003. 477 с.	30			
	Соколов Е. Я. Теплофикация и тепловые сети : учебник для вузов. 7-е изд., стер. Москва : Изд-во МЭИ, 2001. 472 с.	50			
	2. Дополнительная литература				

	2.1. Учебные и научные издания				
1	Бурман А. П., Розанов Ю. К., Шакарян Ю. Г. Управление потоками электроэнергии и повышение эффективности электроэнергетических систем: учебное пособие для вузов. Москва: Изд-во МЭИ, 2012. 335 с. 21,0 усл. печ. л.	2			
2	Казанцев В. П. Общая энергетика: учебное пособие. Пермь: Изд-во ПГТУ, 2009. 270 с.	75			
3	Промышленное применение аккумуляторных батарей. От автомобилей до авиакосмической промышленности и накопителей энергии: коллективная монография пер. с англ. / Ауэрбах Д., Бортоме Я., Бруссили М., Шере Д. Москва: Техносфера, 2011. 782 с. 49,0 усл. печ. л.	2			
4	Соренсен Б. Преобразование, передача и аккумулирование энергии: учебно-справочное руководство пер. с англ. Долгопрудный: Интеллект, 2011. 295 с. 18,5 усл. печ. л.	3			
	2.2. Периодические издания				
	Не используется				
	2.3. Нормативно-технические издания				
	Не используется				
	3. Методические указания для студентов по освоению дисциплины				
	Не используется				
	4. Учебно-методическое обеспечение самостоятельной работы студента				
	Не используется				

6.2. Электронная учебно-методическая литература

Вид литературы	Наименование разработки	Ссылка на информационный ресурс	Доступность (сеть Интернет / локальная сеть; авторизованный / свободный доступ)
Дополнительная литература	Казанцев В. П. Общая энергетика : учебное пособие.	UPNRPUelib2949	локальная сеть; авторизованный доступ

6.3. Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Вид ПО	Наименование ПО
Операционные системы	Windows 10 (подп. Azure Dev Tools for Teaching)
1 1	Microsoft Office Professional 2007. лиц. 42661567
	MATLAB 7.9 + Simulink 7.4 Academic, ПНИПУ 2009 г.
1	Microsoft Office Visio Professional 2016 (подп. Azure Dev Tools for Teaching)

Вид ПО	Наименование ПО
Системы управления проектами, исследованиями, разработкой, проектированием, моделированием и	LabVIEW (NI Academic Site License № 469934)
внедрением	

6.4. Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Наименование	Ссылка на информационный ресурс
Научная библиотека Пермского национального исследовательского политехнического университета	http://lib.pstu.ru/
Электронно-библиотечеая система Лань	https://e.lanbook.com/
Электронно-библиотечная система IPRbooks	http://www.iprbookshop.ru/
Информационные ресурсы Сети КонсультантПлюс	http://www.consultant.ru/

7. Материально-техническое обеспечение образовательного процесса по дисциплине

Вид занятий	Наименование необходимого основного оборудования и технических средств обучения	Количество единиц	
Лабораторная	Компьютер с предустановленным специализированным	10	
работа	ПО, маркерная доска		
Лекция	Компьютер (ноутбук), проектор, экран, маркерная	1	
	доска		
Практическое	Компьютер (ноутбук), проектор, экран, маркерная	1	
занятие	доска		

8. Фонд оценочных средств дисциплины

Описан в отдельном документе	
Officer B officiation dokymente	

Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Пермский национальный исследовательский политехнический университет»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

для проведения промежуточной аттестации обучающихся по дисциплине «Накопители энергии»

Приложение к рабочей программе дисциплины

Направление подготовки: 13.03.02 Электроэнергетика и электротехника

Направленность (профиль) Накопители энергии, передача и распределение

образовательной программы: электрической энергии

Квалификация выпускника: «Бакалавр»

Выпускающая кафедра: Микропроцессорных средств автоматизации

Форма обучения: Очная

Курс: 3 Семестр: 5

Трудоёмкость:

Кредитов по рабочему учебному плану: 5 ЗЕ Часов по рабочему учебному плану: 180 ч.

Форма промежуточной аттестации:

Экзамен: 5 семестр

Фонд оценочных средств для проведения промежуточной аттестации обучающихся проведения промежуточной аттестации обучающихся ДЛЯ по дисциплине является частью (приложением) к рабочей программе дисциплины. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине разработан в соответствии с общей частью фонда оценочных средств для проведения промежуточной аттестации основной образовательной программы, которая устанавливает систему оценивания результатов промежуточной аттестации и критерии выставления оценок. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине устанавливает формы и процедуры текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине.

1. Перечень контролируемых результатов обучения по дисциплине, объекты оценивания и виды контроля

Согласно РПД освоение учебного материала дисциплины запланировано в течение одного семестра (5-го семестра учебного плана). В каждом курсе предусмотрены аудиторные лекционные и лабораторные занятия, а также самостоятельная работа студентов. В рамках освоения учебного материала дисциплины формируется компоненты компетенций знать, уметь, владеть, указанные в РПД, которые выступают в качестве контролируемых результатов обучения по дисциплине (табл. 1.1).

Контроль уровня усвоенных знаний, освоенных умений и приобретенных владений осуществляется в рамках текущего, рубежного и промежуточного контроля при изучении теоретического материала, сдаче отчетов по лабораторным работам и экзамена. Виды контроля сведены в таблицу 1.1.

Таблица 1.1. Перечень контролируемых результатов обучения по дисциплине

Контролируемые результаты обучения по дисциплине (ЗУВы)		Вид контроля						
		Текущий		Рубежный		Итоговый		
		то	ОЛР	Т/КР		Экзамен		
Усвоенные знания								
3.1 знать правила технологического	C1					TB		
функционирования накопителей энергии и								
электрических сетей; требования системы								
технического регулирования к накопителям энергии и								
электрическим сетям.								
3.2 знать методики и правила проведения расчетов для	C2					TB		
проектов накопителей энергии и электрических сетей.								
3.3. знать классификацию, устройство, принцип	С3					TB		
работы, положительные и отрицательные стороны								
использования, современные тенденции в								
производстве и применении основных накопителей								
энергии; особенности выбора накопителей для систем								
с альтернативными источниками энергии.								
3.4 знать основы электроники, схемы, состав	C4					TB		
оборудовании, режим работы электротехнических и								
электроэнергетических установок различного								
назначения.								
Освоенные умения								
У.1 уметь производить расчет и выбор накопителей				KP1		П3		
энергии в системах передачи и распределения								

электрической энергии, в т.ч. содержащих альтернативные источники энергии.				
У.2 уметь проектировать схемы, электротехнические и электроэнергетические установки.			KP2	ПЗ
У.3. уметь выбирать необходимые требования к функционированию накопителей энергии и электрических сетей; выбирать методики расчета для проектов накопителей энергии и электрических сетей; определять перечень оборудования для накопителей энергии и электрических сетей.				ПЗ
Приобретен	ные владе	ния		
В.1 владеть навыками моделирования и исследования режимов работы основных накопителей энергии с применением базовых программно-технических комплексов.		ОЛР1		
В.2 владеть навыками расчета схем и режимов работы электронных и электротехнических установок.		ОЛР2 ОЛР3		
В.3 владеть навыками формирования перечня оптимальных технических решений проектной документации накопителей энергии и электрических сетей.		ОЛР4		

C — собеседование по теме; TO — коллоквиум (теоретический опрос); K3 — кейс-задача (индивидуальное задание); OЛP — отчет по лабораторной работе; T/KP — рубежное тестирование (контрольная работа); TB — теоретический вопрос; TA — практическое задание; TA — комплексное задание экзамена.

Итоговой оценкой достижения результатов обучения по дисциплине является промежуточная аттестация в виде экзамена, проводимая с учетом результатов текущего и рубежного контроля.

2. Виды контроля, типовые контрольные задания и шкалы оценивания результатов обучения

Текущий контроль успеваемости имеет целью обеспечение максимальной эффективности учебного процесса, управление процессом формирования заданных компетенций обучаемых, повышение мотивации к учебе и предусматривает оценивание хода освоения дисциплины. В соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся по образовательным программам высшего образования — программам бакалавриата, специалитета и магистратуры в ПНИПУ предусмотрены следующие виды и периодичность текущего контроля успеваемости обучающихся:

- входной контроль, проверка исходного уровня подготовленности обучаемого и его соответствия предъявляемым требованиям для изучения данной дисциплины;
- текущий контроль усвоения материала (уровня освоения компонента «знать» заданных компетенций) на каждом групповом занятии и контроль посещаемости лекционных занятий;
- промежуточный и рубежный контроль освоения обучаемыми отдельных компонентов «знать», «уметь» заданных компетенций путем компьютерного или бланочного тестирования, контрольных опросов, контрольных работ (индивидуальных домашних заданий), защиты отчетов по лабораторным работам, рефератов, эссе и т.д.

Рубежный контроль по дисциплине проводится на следующей неделе после прохождения модуля дисциплины, а промежуточный — во время каждого контрольного мероприятия внутри модулей дисциплины;

- межсессионная аттестация, единовременное подведение итогов текущей успеваемости не менее одного раза в семестр по всем дисциплинам для каждого направления подготовки (специальности), курса, группы;
 - контроль остаточных знаний.

2.1. Текущий контроль усвоения материала

Текущий контроль усвоения материала в форме собеседования или выборочного теоретического опроса студентов проводится по каждой теме. Результаты по 4-балльной шкале оценивания заносятся в книжку преподавателя и учитываются в виде интегральной оценки при проведении промежуточной аттестации.

2.2. Рубежный контроль

Рубежный контроль для комплексного оценивания усвоенных знаний, освоенных умений и приобретенных владений (табл. 1.1) проводится в форме защиты лабораторных работ и рубежных контрольных работ (после изучения каждого модуля учебной дисциплины).

2.2.1. Защита лабораторных работ

Всего запланировано 4 лабораторных работ. Типовые темы лабораторных работ приведены в РПД.

Защита лабораторной работы проводится индивидуально каждым студентом или группой студентов. Типовые шкала и критерии оценки приведены в общей части ФОС образовательной программы.

2.2.2. Рубежная контрольная работа

Согласно РПД запланировано 2 рубежные контрольные работы (КР) после освоения студентами учебных модулей дисциплины. Первая КР «Расчет и выбор накопителей в системах распределения электроэнергии», вторая КР — «Разработка схем интеграции накопителей электроэнергии в существующие системы электроснабжения предприятий».

Типовые задания первой КР:

- 1. Расчет требуемой мощности накопителей электроэнергии по заданному графику нагрузок и журналу аварийных событий.
- 2. Расчет требуемой мощности и количества литий-ионных батарей для поддержания бесперебойного электроснабжения цеха предприятия

Типовые задания второй КР:

- 1. Разработайте план и схему подключения установки накопителей энергии мощностью N для электроснабжения цеха.
- 2. Произведите расчет требуемой мощности и разработайте схему интеграции редокс-системы в технологический процесс предприятия.

Типовые шкала и критерии оценки результатов рубежной контрольной работы приведены в общей части ФОС образовательной программы.

2.3. Промежуточная аттестация (итоговый контроль)

Допуск к промежуточной аттестации осуществляется по результатам текущего и рубежного контроля. Условиями допуска являются успешная сдача всех лабораторных работ и положительная интегральная оценка по результатам текущего и рубежного контроля.

Промежуточная аттестация, согласно РПД, проводится в виде экзамена по дисциплине устно по билетам. Билет содержит теоретические вопросы (ТВ) для проверки усвоенных знаний, практические задания (ПЗ) для проверки освоенных умений и комплексные задания (КЗ) для контроля уровня приобретенных владений всех заявленных компетенций.

Билет формируется таким образом, чтобы в него попали вопросы и практические задания, контролирующие уровень сформированности *всех* заявленных компетенций. Форма билета представлена в общей части ФОС образовательной программы.

2.3.1. Типовые вопросы и задания для экзамена по дисциплине Типовые вопросы для контроля усвоенных знаний:

- 1. Нормативная и правовая документация о возможности применения и интегрирования накопителей электроэнергии в действующие системы электроснабжения.
- 2. Перспективы развития системы накопления, передачи и распределения электрической энергии.
 - 3. Виды и типы устройств накопления энергии.
 - 4. Процессы хранения, эксплуатации и утилизации накопителей энергии.
- 5. Методы и средства расчета и выбора накопителей энергии в система передачи и распределения энергии.
- 6. Методы и средства эффективного использования накопителей электроэнергии.

Типовые вопросы и практические задания для контроля освоенных умений:

- 1. Произвести расчет мощности и количества накопителей электроэнергии.
- 2. Разработать схемы и план интеграции накопителей электроэнергии в электротехнический комплекс промышленного предприятия.
- 3. Составить модель оценки состояния литий-ионных накопителей в системе распределения энергии.

Типовые комплексные задания для контроля приобретенных владений:

- 1. Рассчитать параметры схемы, определить основные режимы работы установки накопления электроэнергии по графику нагрузок
- 2. Провести обоснование подбора электрооборудования и сделать выводы о целесообразности интеграции накопителей энергии в действующую систему распределения энергии.
- 3. Составить план внедрения системы накопления электроэнергии не нарушая технологический процесс предприятия нефтедобывающей отрасли с учетом наличия собственной генерации.

Перечень типовых ситуационных заданий и кейсов для проверки умений и владений представлен в приложении 1. Полный перечень теоретических вопросов и практических заданий в форме утвержденного комплекта экзаменационных

билетов хранится на выпускающей кафедре.

2.3.2. Шкалы оценивания результатов обучения на экзамене

Оценка результатов обучения по дисциплине в форме уровня сформированности компонентов *знать*, *уметь*, *владеть* заявленных компетенций проводится по 4-х балльной шкале оценивания путем выборочного контроля во время экзамена.

Типовые шкала и критерии оценки результатов обучения при сдаче экзамена для компонентов *знать*, *уметь и владеть* приведены в общей части ФОС образовательной программы.

3. Критерии оценивания уровня сформированности компонентов и компетенций

3.1. Оценка уровня сформированности компонентов компетенций

При оценке уровня сформированности компетенций в рамках выборочного контроля при экзамене считается, что полученная оценка за компонент проверяемой в билете компетенции обобщается на соответствующий компонент всех компетенций, формируемых в рамках данной учебной дисциплины.

Типовые критерии и шкалы оценивания уровня сформированности компонентов компетенций приведены в общей части ФОС образовательной программы.

3.2. Оценка уровня сформированности компетенций

Общая оценка уровня сформированности всех компетенций проводится путем агрегирования оценок, полученных студентом за каждый компонент формируемых компетенций, с учетом результатов текущего и рубежного контроля в виде интегральной оценки по 4-х балльной шкале. Все результаты контроля заносятся в оценочный лист и заполняются преподавателем по итогам промежуточной аттестации.

Форма оценочного листа и требования к его заполнению приведены в общей части ФОС образовательной программы.

При формировании итоговой оценки промежуточной аттестации в виде экзамена используются типовые критерии, приведенные в общей части ФОС образовательной программы.

Типовые ситуационные задания и кейсы для проверки умений и владений

Задание № . (анализ кейс-стади)

Проверяемые результаты обучения: <u>у3; в1</u>

Задание. Внимательно прочитайте текст предложенного кейса и предложите экономически обоснованное и энергетически эффективное решение.

Критерии оценки ситуационных заданий

Оценка «пять «ставится, если обучающийся осознанно излагает и оценивает суть данной ситуации, с аргументацией своей точки зрения, умеет анализировать, обобщать и предлагает верные пути решения складывающейся ситуации.

Оценка «четыре» ставится, если обучающийся понимает суть ситуации, логично строит свой ответ, но допускает незначительные неточности при определении путей решения.

Оценка «три» ставится, если обучающийся ориентируется в сущности складывающейся ситуации, но нуждается в наводящих вопросах, не умеет анализировать и не совсем верно намечает пути решения ситуации.

Оценка «два» ставится, если обучающийся не ориентируется и не понимает суть данной ситуации, не может предложить путей ее решения, либо допускает грубые ошибки.

Возможная ситуация. На предприятии химической отрасли полного цикла производства для обеспечения бесперебойного и надежного электроснабжения применяют установки литий-ионных батарей. Емкости литий-ионных батарей становится недостаточно после полугода активной эксплуатации необходимости выдачи в сеть предприятия 6 МВт*ч. Снижение величины энергии, выдаваемой в сеть предприятия, сопровождается нарушением заявленного графика потребления электроэнергии из внешней энергетической сети и влечет за собой санкционные выплаты в размере 200 тыс. руб./мес. и ежемесячно увеличивается на 50 тыс. руб./мес. при повторном нарушении договора. В качестве альтернативного решения руководство предприятия рассматривало применение альтернативных источников электроэнергии.

При анализе технологического процесса и организации предприятия было выяснено, что основными продуктами отхода являются такие химические компоненты, как: водяной пар; нефтесодержащие отходы; оксид ванадия; различные масла и электролитические смеси. Часть отходов технологического процесса предприятия уходит на повторное применение, а часть на утилизацию. При этом, некоторые вещества, пройдя 3 круга химических реакций, отправляются на утилизацию из-за невозможности дальнейшего применения в технологическом процессе.